Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Coronavirus Drug Discovery: Druggable Targets and In Silico Update: Volume 3 ; : 355-376, 2022.
Article in English | Scopus | ID: covidwho-2149156

ABSTRACT

The present study conducted an in silico investigation and identifications of bioactive compounds from medicinal plants against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cellular entry. Thirty nine (39) bioactive compounds with evidence of in vitro or in vivo antidiabetic activities from medicinal plants were utilized in order to provide insight about their possible inhibitory potentials against SARS-CoV-2 cellular entry. Results from this study showed that silymarin, sanguinarine, withanolides, boswellic acids, fisetin, celastrol, neferine, ursolic acid, rutin, gambogic acid, quercetin, and luteolin expressed multiple binding capacity against nucleocapsid dimerization domain (−10.7 to −8.4kcal/mol), spike's protein binding domain (−10.0 to −8.1kcal/mol), and spike receptor-binding domain (−10.8 to −9.0kcal/mol) compared to lopinavir and remdesivir which were used as reference compounds in the study. However, withanolides, fisetin, luteolin, sanguinarine, and silymarin are most druggable phytochemicals as they obey the Lipinski's rule of five analyses with no signs of in silico predictory toxicity. Thus, they are recommended for further studies for the development of phytotherapy formulation to combat SARS-CoV-2 disease. © 2022 Elsevier Inc. All rights reserved.

2.
mBio ; 13(4): e0148522, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1950004

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the global pandemic and life-threatening coronavirus disease 2019 (COVID-19). Although vaccines and therapeutic antibodies are available, their efficacy is continuously undermined by rapidly emerging SARS-CoV-2 variants. Here, we found that all-trans retinoic acid (ATRA), a vitamin A (retinol) derivative, showed potent antiviral activity against all SARS-CoV-2 variants in both human cell lines and human organoids of the lower respiratory tract. Mechanistically, ATRA directly binds in a deep hydrophobic pocket of the receptor binding domain (RBD) located on the top of the SARS-CoV-2 spike protein (S) trimer. The bound ATRA mediates strong interactions between the "down" RBDs and locks most of the S trimers in an RBD "all-down" and ACE2-inaccessible inhibitory conformation. In summary, our results reveal the pharmacological biotargets and structural mechanism of ATRA and other retinoids in SARS-CoV-2 infection and suggest that ATRA and its derivatives could be potential hit compounds against a broad spectrum of coronaviruses. IMPORTANCE Retinoids, a group of compounds including vitamin A and its active metabolite all-trans retinoic acid (ATRA), regulate serial physiological activity in multiple organ systems, such as cell growth, differentiation, and apoptosis. The ATRA analogues reported to date include more than 4,000 natural and synthetic molecules that are structurally and/or functionally related to ATRA. Here, we found that ATRA showed potent antiviral activity against all SARS-CoV-2 variants by directly binding in a deep hydrophobic pocket of the receptor binding domain (RBD) located on top of the SARS-CoV-2 spike protein (S) trimer. The bound ATRA mediates strong interactions between the "down" RBDs and locks most of the S trimers in an RBD "all-down" and ACE2-inaccessible inhibitory conformation, suggesting the pharmacological feasibility of using ATRA or its derivatives as a remedy for and prevention of COVID-19 disease.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Tretinoin/metabolism , Tretinoin/pharmacology , Vitamin A/metabolism , Vitamin A/pharmacology
3.
Biomed Pharmacother ; 151: 113104, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1850705

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) has continuously evolved, resulting in the emergence of several variants of concern (VOCs). To study mechanisms of viral entry and potentially identify specific inhibitors, we pseudotyped lentiviral vectors with different SARS-CoV-2 VOC spike variants (D614G, Alpha, Beta, Delta, Omicron/BA.1), responsible for receptor binding and membrane fusion. These SARS-CoV-2 lentiviral pseudoviruses were applied to screen 774 FDA-approved drugs. For the assay we decided to use CaCo2 cells, since they equally allow cell entry through both the direct membrane fusion pathway mediated by TMPRSS2 and the endocytosis pathway mediated by cathepsin-L. The active molecules which showed stronger differences in their potency to inhibit certain SARS-CoV-2 VOCs included antagonists of G-protein coupled receptors, like phenothiazine-derived antipsychotic compounds such as Chlorpromazine, with highest activity against the Omicron pseudovirus. In general, our data showed that the various VOCs differ in their preferences for cell entry, and we were able to identify synergistic combinations of inhibitors. Notably, Omicron singled out by relying primarily on the endocytosis pathway while Delta preferred cell entry via membrane fusion. In conclusion, our data provide new insights into different entry preferences of SARS-CoV-2 VOCs, which might help to identify new drug targets.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Caco-2 Cells , Drug Evaluation, Preclinical , Humans , Spike Glycoprotein, Coronavirus/metabolism
4.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1623730

ABSTRACT

Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta's spike protein shift the protein towards a net positive electrostatic potential. To understand the key molecular drivers of the Delta infection, we investigate the cellular uptake of the Delta spike protein and Delta spike-bearing SARS-CoV-2 pseudoviruses. Specific in vitro modification of ACE2 and syndecan expression enabled us to demonstrate that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than towards ACE2. In addition to attachment to the polyanionic heparan sulfate chains, the Delta spike's molecular interactions with syndecan-4 also involve syndecan-4's cell-binding domain that mediates cell-to-cell adhesion. Regardless of the complexity of these interactions, exogenously added heparin blocks Delta's cellular entry as efficiently as syndecan-4 knockdown. Therefore, a profound understanding of the molecular mechanisms underlying Delta infections enables the development of molecularly targeted yet simple strategies to reduce the Delta variant's spread.


Subject(s)
COVID-19/transmission , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Syndecan-4/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cell Line , Heparan Sulfate Proteoglycans/antagonists & inhibitors , Heparan Sulfate Proteoglycans/metabolism , Humans , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Syndecan-4/genetics , Virus Internalization
5.
Int J Mol Sci ; 22(10)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234745

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel emerging pathogen causing an unprecedented pandemic in 21st century medicine. Due to the significant health and economic burden of the current SARS-CoV-2 outbreak, there is a huge unmet medical need for novel interventions effectively blocking SARS-CoV-2 infection. Unknown details of SARS-CoV-2 cellular biology hamper the development of potent and highly specific SARS-CoV-2 therapeutics. Angiotensin-converting enzyme-2 (ACE2) has been reported to be the primary receptor for SARS-CoV-2 cellular entry. However, emerging scientific evidence suggests the involvement of additional membrane proteins, such as heparan sulfate proteoglycans, in SARS-CoV-2 internalization. Here, we report that syndecans, the evolutionarily conserved family of transmembrane proteoglycans, facilitate the cellular entry of SARS-CoV-2. Among syndecans, the lung abundant syndecan-4 was the most efficient in mediating SARS-CoV-2 uptake. The S1 subunit of the SARS-CoV-2 spike protein plays a dominant role in the virus's interactions with syndecans. Besides the polyanionic heparan sulfate chains, other parts of the syndecan ectodomain, such as the cell-binding domain, also contribute to the interaction with SARS-CoV-2. During virus internalization, syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Both ACE2 and syndecan inhibitors exhibited significant efficacy in reducing the cellular entry of SARS-CoV-2, thus supporting the complex nature of internalization. Data obtained on syndecan specific in vitro assays present syndecans as novel cellular targets of SARS-CoV-2 and offer molecularly precise yet simple strategies to overcome the complex nature of SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Receptors, Coronavirus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Syndecans/metabolism , Virus Internalization , Amiloride/pharmacology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Epithelial Sodium Channel Blockers/pharmacology , Humans , Peptides/pharmacology , Protein Domains , SARS-CoV-2/metabolism , Syndecan-4/antagonists & inhibitors , Syndecan-4/metabolism , Syndecans/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL